SW development
DDD and MVC architecture

What is DDD Architecture?

Domain-Driven Design (DDD) is an architectural approach and methodology for software
development that emphasizes focusing on the core domain and its logic. It helps in creating software
systems that closely reflect the real-world problems they are designed to solve.

Key principles of DDD:

1. Ubiquitous Language: A common language shared by technical and non-technical
stakeholders.

2. Bounded Contexts: Clear boundaries for different parts of the system to maintain
separation of concerns.

3. Entities and Value Objects: Modeling real-world concepts with entities (objects with a
distinct identity) and value objects (immutable and defined by their attributes).

4. Aggregates: Clusters of domain objects treated as a single unit for consistency.
5. Repositories: Abstract data stores to handle persistence.
6. Services: Operations that don't naturally belong to entities or value objects.

DDD aligns software design with business needs and focuses heavily on the domain layer, which
represents the core business logic.

MVC Architecture
Model-View-Controller (MVC) is a design pattern for organizing the structure of software systems,
commonly used in web and application development. It separates the application into three
interconnected components:

1. Model: Represents the data and business logic of the application.

2. View: Handles the presentation layer, rendering Ul components.

3. Controller: Mediates user input, processes it, and updates the Model or View.

Comparison Between DDD and MVC

Feature DDD (Domain-Driven Design) MVC (Model-View-Controller)
Focus Focused on the domain layer Focused on separating Ul, logic,
and business logic. and data.
Complexity Designed for complex systems Suitable for simpler systems or
with rich domains. straightforward Ul-driven
applications.
Separation of Concerns Emphasizes separating domain Emphasizes separating Ul logic

logic via entities, value objects, from business logic and data.
and bounded contexts.

Business Logic Placement Encapsulated in the domain Typically placed in the Model.
model.

Scalability Scales well for large, evolving Scales for smaller, simpler
business domains. applications but can become

unwieldy for complex systems.
Page1l/2
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html


https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html

SW development

Feature DDD (Domain-Driven Design) MVC (Model-View-Controller)

User Interaction User interaction is not a central Explicitly manages user
concern; focuses on domain interaction and Ul changes.
integrity.

Repositories Uses repositories as abstractions Often integrates data access
for persistence. directly into the Model.

Suitability Best for enterprise-grade Best for web applications with
applications or systems with clear separation between Ul
rich, evolving business rules. and logic.

Flexibility Highly flexible; requires Straightforward; often tightly
significant design upfront. coupled with frameworks (e.qg.,

Rails, Django).

Use Case Examples

e DDD: A complex e-commerce platform where pricing, inventory, and order systems have rich
business rules and domain logic.

¢ MVC: A blog or content management system where the focus is on rendering views and
CRUD operations.

Integration

In practice, you can use DDD principles within the Model of an MVC framework. For example, the
domain layer in DDD can act as the Model in MVC, while Views and Controllers manage presentation
and user interaction separately.

Unique solution ID: #1159
Author: n/a
Last update: 2025-05-21 13:23

Page 2 /2
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html


http://www.tcpdf.org
https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html

