
SW development

DDD and MVC architecture

What is DDD Architecture?

Domain-Driven Design (DDD) is an architectural approach and methodology for software
development that emphasizes focusing on the core domain and its logic. It helps in creating software
systems that closely reflect the real-world problems they are designed to solve.

Key principles of DDD:

1. Ubiquitous Language: A common language shared by technical and non-technical
stakeholders.

2. Bounded Contexts: Clear boundaries for different parts of the system to maintain
separation of concerns.

3. Entities and Value Objects: Modeling real-world concepts with entities (objects with a
distinct identity) and value objects (immutable and defined by their attributes).

4. Aggregates: Clusters of domain objects treated as a single unit for consistency.

5. Repositories: Abstract data stores to handle persistence.

6. Services: Operations that don't naturally belong to entities or value objects.

DDD aligns software design with business needs and focuses heavily on the domain layer, which
represents the core business logic.

MVC Architecture

Model-View-Controller (MVC) is a design pattern for organizing the structure of software systems,
commonly used in web and application development. It separates the application into three
interconnected components:

1. Model: Represents the data and business logic of the application.

2. View: Handles the presentation layer, rendering UI components.

3. Controller: Mediates user input, processes it, and updates the Model or View.

Comparison Between DDD and MVC

Feature DDD (Domain-Driven Design) MVC (Model-View-Controller)
Focus Focused on the domain layer

and business logic.
Focused on separating UI, logic,
and data.

Complexity Designed for complex systems
with rich domains.

Suitable for simpler systems or
straightforward UI-driven
applications.

Separation of Concerns Emphasizes separating domain
logic via entities, value objects,
and bounded contexts.

Emphasizes separating UI logic
from business logic and data.

Business Logic Placement Encapsulated in the domain
model.

Typically placed in the Model.

Scalability Scales well for large, evolving
business domains.

Scales for smaller, simpler
applications but can become
unwieldy for complex systems.

Page 1 / 2
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html

https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html


SW development
Feature DDD (Domain-Driven Design) MVC (Model-View-Controller)
User Interaction User interaction is not a central

concern; focuses on domain
integrity.

Explicitly manages user
interaction and UI changes.

Repositories Uses repositories as abstractions
for persistence.

Often integrates data access
directly into the Model.

Suitability Best for enterprise-grade
applications or systems with 
rich, evolving business rules.

Best for web applications with 
clear separation between UI
and logic.

Flexibility Highly flexible; requires
significant design upfront.

Straightforward; often tightly
coupled with frameworks (e.g.,
Rails, Django).

 

 

Use Case Examples

DDD: A complex e-commerce platform where pricing, inventory, and order systems have rich
business rules and domain logic.

MVC: A blog or content management system where the focus is on rendering views and
CRUD operations.

Integration

In practice, you can use DDD principles within the Model of an MVC framework. For example, the
domain layer in DDD can act as the Model in MVC, while Views and Controllers manage presentation
and user interaction separately.

Unique solution ID: #1159
Author: n/a
Last update: 2025-05-21 13:23

Powered by TCPDF (www.tcpdf.org)

Page 2 / 2
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html

http://www.tcpdf.org
https://kb.eqsoft.eu/content/37/160/en/ddd-and-mvc-architecture.html

