SW development

Data storage

ChatGPT said:

The choice of where and how to save changes in a Vue.js application depends on your application's
requirements and the desired user experience. Here’s a breakdown of the options:

1. Send Data to Server
e When to Use:
o If changes need to be persistent across sessions and devices.
o If collaboration or real-time updates across users is required.
o If data security and backup are priorities.
¢ Implementation:

o Use a debounce or throttle function to minimize the frequency of updates to the
server.

o Use REST APIs or WebSocket for communication.
o Example using axios for REST API:

javascript

CopyEdit

import axios from 'axios'; const saveChanges = debounce((data) => {
axios.post('/api/save-changes', data) .then(response => console.log('Changes
saved!')) .catch(error => console.error('Error saving changes:', error)); }, 300); //
Delay to reduce server load

2. Local Storage

e When to Use:
o For small, non-sensitive data that doesn't require cross-device availability.
o To save state temporarily and load it on page reload.

e Pros:
o Simple and fast.
o No server dependency.

e Cons:

o Limited to 5MB.

Pagel/4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html


https://kb.eqsoft.eu/content/37/165/en/data-storage.html

SW development
o Data is tied to the browser and device.
¢ Implementation:

javascript

CopyEdit

const saveTolLocalStorage = (key, data) => { localStorage.setltem(key, JSON.stringify(data));
}; const loadFromLocalStorage = (key) => { return JSON.parse(localStorage.getlitem(key));

¥

3. Session Storage
e When to Use:
o For temporary data that only needs to persist for the current browser session.
o Similar to local storage but data is cleared when the page session ends.

¢ Implementation:
Similar to local storage:

javascript

CopyEdit

sessionStorage.setltem('key’, JSON.stringify(data)); const data =
JSON.parse(sessionStorage.getltem('key'));

4. IndexedDB

e When to Use:
o For larger and more complex data storage.
o When you need structured storage like a database.
o For offline-first applications with large amounts of data.

* Pros:
o Supports more data than local storage (usually 50MB or more).
o Can store complex objects.

* Cons: Page 2 /4

© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html


https://kb.eqsoft.eu/content/37/165/en/data-storage.html

SW development
o More complex API than local or session storage.

¢ Implementation:
Using a library like dexie.js simplifies IndexedDB operations:

javascript

CopyEdit

import Dexie from 'dexie'; const db = new Dexie('MyDatabase'); db.version(1).stores({
changes: '++id, data' }); const saveTolndexedDB = async (data) => { await
db.changes.add({ data }); }; const loadFromindexedDB = async () => { return await
db.changes.toArray(); };

Recommendations
e For Immediate Saving to Server:
o Use REST APIs or WebSocket for real-time applications.
o Add debouncing to avoid overwhelming the server with too many requests.
* For Local Persistence:
o Use localStorage or sessionStorage for simple and small-scale needs.

o Use IndexedDB for larger datasets or offline capabilities.

Hybrid Approach
You can combine strategies for a robust solution:
¢ Use IndexedDB or local storage for instant local saves and offline support.

e Periodically sync changes to the server in the background for persistence.

This approach balances performance, user experience, and data reliability.

Unique solution ID: #1164
Author: n/a
Page 3/4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html


https://kb.eqsoft.eu/content/37/165/en/data-storage.html

SW development

Last update: 2025-06-11 15:16

Page 4 /4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26
URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html


http://www.tcpdf.org
https://kb.eqsoft.eu/content/37/165/en/data-storage.html

