
SW development

Data storage

ChatGPT said:

The choice of where and how to save changes in a Vue.js application depends on your application's
requirements and the desired user experience. Here’s a breakdown of the options:

1. Send Data to Server

When to Use:

If changes need to be persistent across sessions and devices.

If collaboration or real-time updates across users is required.

If data security and backup are priorities.

Implementation:

Use a debounce or throttle function to minimize the frequency of updates to the
server.

Use REST APIs or WebSocket for communication.

Example using axios for REST API:

javascript

CopyEdit

 

import axios from 'axios'; const saveChanges = debounce((data) => {
axios.post('/api/save-changes', data) .then(response => console.log('Changes
saved!')) .catch(error => console.error('Error saving changes:', error)); }, 300); //
Delay to reduce server load 

2. Local Storage

When to Use:

For small, non-sensitive data that doesn't require cross-device availability.

To save state temporarily and load it on page reload.

Pros:

Simple and fast.

No server dependency.

Cons:

Limited to 5MB.

Page 1 / 4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html

https://kb.eqsoft.eu/content/37/165/en/data-storage.html


SW development
Data is tied to the browser and device.

Implementation:

javascript

CopyEdit

 

const saveToLocalStorage = (key, data) => { localStorage.setItem(key, JSON.stringify(data));
}; const loadFromLocalStorage = (key) => { return JSON.parse(localStorage.getItem(key));
}; 

3. Session Storage

When to Use:

For temporary data that only needs to persist for the current browser session.

Similar to local storage but data is cleared when the page session ends.

Implementation:
Similar to local storage:

javascript

CopyEdit

 

sessionStorage.setItem('key', JSON.stringify(data)); const data =
JSON.parse(sessionStorage.getItem('key')); 

4. IndexedDB

When to Use:

For larger and more complex data storage.

When you need structured storage like a database.

For offline-first applications with large amounts of data.

Pros:

Supports more data than local storage (usually 50MB or more).

Can store complex objects.

Cons: Page 2 / 4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html

https://kb.eqsoft.eu/content/37/165/en/data-storage.html


SW development
More complex API than local or session storage.

Implementation:
Using a library like dexie.js simplifies IndexedDB operations:

javascript

CopyEdit

 

import Dexie from 'dexie'; const db = new Dexie('MyDatabase'); db.version(1).stores({ 
changes: '++id, data' }); const saveToIndexedDB = async (data) => { await
db.changes.add({ data }); }; const loadFromIndexedDB = async () => { return await
db.changes.toArray(); }; 

Recommendations

For Immediate Saving to Server:

Use REST APIs or WebSocket for real-time applications.

Add debouncing to avoid overwhelming the server with too many requests.

For Local Persistence:

Use localStorage or sessionStorage for simple and small-scale needs.

Use IndexedDB for larger datasets or offline capabilities.

Hybrid Approach

You can combine strategies for a robust solution:

Use IndexedDB or local storage for instant local saves and offline support.

Periodically sync changes to the server in the background for persistence.

This approach balances performance, user experience, and data reliability.

 

 

 

 

Unique solution ID: #1164
Author: n/a

Page 3 / 4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html

https://kb.eqsoft.eu/content/37/165/en/data-storage.html


SW development
Last update: 2025-06-11 15:16

Powered by TCPDF (www.tcpdf.org)

Page 4 / 4
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 05:26

URL: https://kb.eqsoft.eu/content/37/165/en/data-storage.html

http://www.tcpdf.org
https://kb.eqsoft.eu/content/37/165/en/data-storage.html

