Security
Checklist na zabezpeceni webovych aplikaci

https://blog.horejsek.com/bezpecnost/

V posledni dobé jsem Castokrat resil bezpecnost webl a vzpominal, coze vSe to musim mit v cajku.
Tak jsem se rozhodl si sepsat takovy check-list. A mozné bude uzite¢ny i nékomu jinému. :-)

Zakladem je HTTPS

Bez toho asi nemd smysl ani rfesit nic jiného. TakzZe to je must-have prvni véc, kterou resit, pokud
chcete web zabezpedit. A ne jen nutné zabezpecit, cokoliv probéhne po dratech nesifrované, mize
kdekoliv po cesté nékdo upravit. Tfeba se na nas prizivovat vkladanim vlastni reklamy. Jop, i taci
poskytovatelé internetu mezi ndmi existuiji.

HSTS

KdyZz uz je HTTPS nastavené, dalsi krok je mit spravné nastaveny redirect z HTTP na HTTPS. Aby se
nestalo, Ze Ize néjak web prohlizet pres nezabezpecené vody. Kdyz uz jste si dali tu praci, at to ma
smysl.

Redirect vSak neni vSe. UZivatelé ¢asto pecou na to, co do prohlizece zadaji, a tak Gto¢nik mlze
vylakat obét na HTTP, i kdyz tfeba méme redirecty poresené. Proto nastavime HSTS hlavicku, aby
prohlize¢ ani HTTP nezkousel a v takovém pripadé sam presméroval. (Ano, znamené to, ze kdyz

v/ v 7

podéldm SSL, nebude vibec fungovat web. Ale mnohdy lepsi zddny, nez nebezpecny.)

Strict-Transport-Security: max-age=31536000; includeSubDomains

Session cookie

Web je nyni zabezpecleny a snazime se naSeho uzivatele drzet od HTTP co nejdale. Ale nikdy si
nemUzeme byt jisti, co se Gto¢nikovi povede udélat. Proto budeme drzet to nejcenéjsi v co nejvétsim
bezpedi. Mluvim o session v cookie. Rozhodné by méla byt nastavena jako HTTP, coz znamena, zZe ji
nelze predist JavaScriptem. Mit nastaveno taky Secure neni taky na Skodu. Znamena to, ze cookina
pljde pouze po Sifrovaném spojeni.

CSP

Neboli Content Security Policy je hlavi¢ka povolujici jen urcité zdroje. To znamend, Ze touto hlavi¢kou
Ize znemoznit Utoc¢nikovi vlozit nebezpecny script. Resp. vlozit mlze, ale nic to neudéld. Lze nastavit
defaultné pro vsechny, pripadné pro kazdy typ zvlast (obrazek, fonty, JavaScripty, ...).

Rozhodné je dobré se vyhnout unsafe-inline ¢i dokonce unsafe-eval. Nejlépe dovolit jen vasi doménu,
pripadné jesté ovérené CDNky. A samozrejmé nejen zakazat, ale také zakdzané pokusy nahlasit - je
dobré védét, zda se nékdo o néco pokousi.

Content-Security-Policy: default-src 'self'; report-uri /csp-report;

Pripadné Ize vyuzit verzi, kterd jen nebezpelny zdroj naprasi. Vhodné do zacatku, nez se odladi jiz
Pagel/5
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 07:07
URL: https://kb.eqgsoft.eu/content/6/31/en/checklist-na-zabezpeceni-webovych-aplikaci.html

https://blog.horejsek.com/bezpecnost/
https://kb.eqsoft.eu/content/6/31/en/checklist-na-zabezpecení-webových-aplikací.html

Security
bézici web, ale rychle bych se dostal do striktniho médu.

Content-Security-Policy-Report-Only: default-src 'self'; report-uri /csp-report;

XSS

CSP je fajn, ale pokud se Gtoc¢nikovi povede dostat do stranky script pres nasi samotnou webovou
aplikaci, jsme namydleni. Nastésti prohlizece obsahuji zabudovanou ochranu proti XSS (Cross Site
Scripting). Normalné byva zapnutd, ale jistota je jistota... (A opét Ize bonzovat, coz je asi to

Vv

X-Xss-Protection: 1; mode=block; report=/xss-report;

Iframe

Iframy se sice uz nepouzivaji, ale neméli bychom na né zapominat. Skryvaiji totiz potencidin{
nebezpeti. Uto¢nik méze nasi stranku dat do iframe, prekryt n&jakou zajimavou hrou (tfeba klikaci
reklama v podobé ,chytni vSechny mic¢e a mas moznost vyhrat novy iPhone”) a donutit tak uzivatele
kliknout na mista na nasem webu, jak potrebuje. Proto je nejlepsi Uplné zablokovat moznost nasi
stranku v néjakém iframe mit.

X-Frame-Options: DENY

Typy souboru

At uz na webu mame nahravani soubord, které pak i zobrazujeme, ¢i nikoliv, nikdy si nemUzeme byt
jisti, co se Utocnikovi povede. Proto je moznost mu zase jednoduSe znepfijemnit praci a to tak, ze typ
souboru budeme vzdy urcovat my a prohlize¢ se nebude snazit hadat. Tedy pokud Gto¢nik nahraje
JavaScript ¢i celou HTML stranku, ale my takové véci nepodporujeme, pak prosté jako HTML stranku
nevydame a tudiz se nic nestane.

X-Content-Type-Options: nosniff

CSRF

Uz jste si vSimli, Ze e-mailové aplikace se ptaji, zda zobrazit obrazky? Je to z ddvodu, Ze pokud jste
napriklad prihldseni na Facebooku a Gtocnik vdm poslal e-mail s obrdzkem, ktery neni obrazek, ale
jen odkaz na smazani Uctu, a vy se na takovy obrdzek chcete podivat... mate po Uctu. Teoreticky.
Bude to platit na webech, kde takové akce Ize provést obycejnym GET pozadavkem, coz Facebook
Page2/5
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 07:07
URL: https://kb.eqgsoft.eu/content/6/31/en/checklist-na-zabezpeceni-webovych-aplikaci.html

https://kb.eqsoft.eu/content/6/31/en/checklist-na-zabezpecení-webových-aplikací.html

Security
neni.

Zakladem je veskeré akce nedélat GETem, ale POSTem ¢i ostatnimi. To ale nezabrani misto obrazku

vyuzit napriklad formuldr, ktery uzivatel vyplni nevédomky, neb si mysli, Ze je o né¢em UpIné jiném.

Proto je dobré pridat ke kazdému pozadavku jesté néjaky token. Na serveru vygenerovat token a ten
pfi akci poslat zpét (a zvalidaovat, samozrejmé). Poté Utocnik musi nejprve zjistit i validni CSRF

vvvvvv

HPKP

Tresni¢kou na dortu je HPKP, coz urcuje, kterym certifikatlm vérit. Defaultné prohlizece véri vsem
certifikatlm autorit, které maji v seznamu vérohodnych. Jenze uz se stalo, Ze byla certifika¢ni
autorita napadnuta...

Public-Key-Pins: pin-sha256='.."; pin-sha256='..'; max-age=5184000; report-
uri=/hpkp-report;

V ukéazce je vidét dvakrat pin-sha256. To neni preklep, ale prvni je aktudlné pouzivany a druhy
backup. Napfriklad pfiprava na vyexpirovani atp. A opét Ize zaroven bonzovat pokusy a nebo pouze
bonzovat.

Public-Key-Pins-Report-Only: pin-sha256='..'; pin-sha256="'..'; max-age=5184000; report-
uri=/hpkp-report;

Hesla

Pokud se spravuji hesla, musi se sledovat novinky a mit hesla co nejlépe zabezpecena. Tedy zadné
MD5 hashe, ale co nejpomalejsi hashovaci algoritmus. Jakykoliv algoritmus je oslaben proti jednomu
typu utoku - brute force. Proto je dobré vybrat pomaly algoritmus, aby si nemohl Gto¢nik louskat
hashe na jeho Raspberry po vecerech. Casto jsem pouzival PBKDF2 (default v Djangu), ale nic se
nezkazi s bcrypt (ndro¢né na CPU) ¢i scrypt (naro¢né na pameét), které uz jsou rozsirené.
Mimochodem vykon Ize stale |épe Skalovat, nez pamét.

Jelikoz uniknuti databaze, kterou by mohl zacit nékdo louskat, nehrozi tak ¢asto, je potfeba se
zamyslet taky nad prihlasovacim formuldfem. Neni dobré nechat Utocnika v pohodé zkousSet louskat
primo na nasem webu. Minimalné si monitorovat nebezpe¢né mnozstvi pokust, radéji s
automatickym zpomalovanim az blokovanim. S blokovanim vsak opatrné, neb se pak mlze zamezit
pristup skute¢nym uzivateldm. Napriklad u nasi ,interni“ aplikaci vime, odkud se uzivatelé prihlasuji,
takze mUzeme podezreld mista rovnou blokovat. U aplikaci pro Sirokou verejnost je lepsi volbou

zpomalovani.
Logovani

Pokud méate vSe az potud, web mate dobre zabezpecen. :-) Ale dovolim si na zavér jesté jednu
drobnost. A to, Ze i na druhé strané, tedy na vasem serveru, je potreba k citlivym Gdajim pristupovat
opatrné. Zdkladem je mit vypnut debug méd v produkci (a nejlépe i na testu). | kdyz ma napfiklad
Werkzeug debugger nové PIN k aktivaci, je to prosté dira.

Co je ale dUlezitéjsi, je logovani. Loguligtgeesé ?eSIé pozadavky i se vstupnimi parametry? Vsude, v€etné

© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 07:07
URL: https://kb.eqgsoft.eu/content/6/31/en/checklist-na-zabezpeceni-webovych-aplikaci.html

https://kb.eqsoft.eu/content/6/31/en/checklist-na-zabezpecení-webových-aplikací.html

Security

login obrazovky? Pak mate logy pravdépodobné piné hesel v Citelné podobé. My jsme si napfriklad ve
Flasku pretizili Werkzeugovy ImmutableOrderedMultiDict, ktery skryje nebezpecné hodnoty.

Dalsi tip, pokud pracujete v kédu casto s citlivymi Udaji, pouzit néjaky specialni objekt, ktery nedovoli
nijak zobrazit vnitfni hodnotu. M{zete pak hodnotu prenaset vSude mozné a mate jistotu, Ze se po
cesté nezaloguje. Néco ve stylu:

class SecretValue(object):

def init (self, secret value):

self. secret value = secret value

def get secret value(self):

return self. secret value

def str (self):

return '--secret-value--'

def repr_(self):

return '<SecretValue>'

>>> v = SecretValue('aaa')

>>> str(v)

'--secret-value--'

>>> repr(v)

'<SecretValue>'

>>> str({'value': v})

"{'value': }"

>>> logging.info(p)
INFO:root:--secret-value--

>>> logging.info('value: {}'.format(v))

INFO:root:value: --secret-value--

Page 4 /5
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 07:07
URL: https://kb.eqgsoft.eu/content/6/31/en/checklist-na-zabezpeceni-webovych-aplikaci.html

https://kb.eqsoft.eu/content/6/31/en/checklist-na-zabezpecení-webových-aplikací.html

Security

Posledni tip je na tracebacky. Python to napriklad nedéld, ale PHP nahradi parametry funkci za
skutecné hodnoty. Docela uzite¢na véc pro debugovani, ale nepraktickd na citlivé Udaje. Doporuduiji
takové chovéani vypnout, pokud Ize. Pokud nelze, vybrat si rozuméjsi nastroj. :-)

Unique solution ID: #1030
Author: n/a
Last update: 2020-09-09 23:43

Page5/5
© 2026 Jan Hrdlicka <admin@cebin.cz> | 2026-01-26 07:07
URL: https://kb.eqgsoft.eu/content/6/31/en/checklist-na-zabezpeceni-webovych-aplikaci.html

http://www.tcpdf.org
https://kb.eqsoft.eu/content/6/31/en/checklist-na-zabezpecení-webových-aplikací.html

